Dynamic mode theory of optical resonators undergoing refractive index changes

نویسندگان

  • Brian A. Daniel
  • Drew N. Maywar
  • Govind P. Agrawal
چکیده

We present a theoretical model describing the dynamics of the electromagnetic field in an optical resonator undergoing refractive index changes. We use an operator formulation of Maxwell’s equations with a standard timedependent perturbation theory to derive the dynamic mode-amplitude equations that govern the response of a resonator to a perturbing dipole-moment density. We show that in the case of time-dependent changes in the refractive index, a coupling matrix ΓkmðtÞ that appears in the equations accounts for all novel physical processes that can be expected to occur. In particular, the phenomenon of adiabatic wavelength conversion is governed by the diagonal elements of this matrix, and the off-diagonal elements are responsible for the transfer of energy from an excited resonator mode into its neighboring modes. Our model clearly shows that the latter process can occur only when the index changes are spatially nonuniform. We discuss the spatially uniform and nonuniform cases separately and compare the predictions of ourmodel with experimental data available in the literature. The overall good agreement suggests that this model should be useful in the study of dynamic optical resonators. Moreover, since we do not make any assumptions about the type of dielectric cavity used, the width of input pulses, or the speed with which the refractive index is changed, this model should be applicable under most experimental situations. © 2011 Optical Society of America OCIS codes: 130.0130, 130.7405, 230.0230, 070.5753.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Add-Drop and Channel-Drop Optical Filters Based on Photonic Crystal Ring Resonators

Here, we propose an add-drop and a channel drop filter based on two-dimensional photonic crystal all circular ring resonators. These structures are made of a square lattice of silicon rods with the refractive index n1=3.464 surrounded by air (with refractive index n2=1). The broadest photonic band gap occurs at the filling ratio of r/a = 0.17. Two linear defect W1 waveguides couple to the ring....

متن کامل

Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter

Photonic crystal ring resonators (PCRRs) are traditional structures fordesigning optical channel drop filters. In this paper, Photonic crystal channel drop filter(CDFs) with a new configuration of ring resonator is presented. The structure is made ofa square lattice of silicon rods with the refractive index nsi=3. 4 which are perforated inair with refractive index nair=1. Calculations of band s...

متن کامل

Novel Design of Optical Channel Drop Filter Based on Photonic Crystal Ring Resonators

In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spec...

متن کامل

Simulation of Optical Microfiber Loop Resonators for Ambient Refractive Index Sensing

Based on theoretical modeling and optimization, we exploit the application of optical microfiber loop resonators in ambient refractive index sensing. We set up a reliable theoretical model and optimize the structural parameters of microfiber loop resonators including the radius of the microrfiber, the radius of the loop and the length of the coupling region for higher sensitivity, wider dynamic...

متن کامل

A New Design of Photonic Crystal Filter and Power Splitter Based on Ring Resonators

Here, we propose an optical filter and an optical power splitter based on two-dimensionalphotonic crystal all circular ring resonators. These structures are made of a square lattice ofsilicon rods with the refractive index n1=3.464 surrounded by air (with refractive indexn2=1). First, we have designed the filter and by using that, we designed a power splitter. Thetransmission efficiency and Qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011